A pr 2 00 8 REALITY PROPERTIES OF CONJUGACY CLASSES IN G 2

نویسنده

  • Maneesh Thakur
چکیده

Let G be an algebraic group over a field k. We call g ∈ G(k) real if g is conjugate to g−1 in G(k). In this paper we study reality for groups of type G2 over fields of characteristic different from 2. Let G be such a group over k. We discuss reality for both semisimple and unipotent elements. We show that a semisimple element in G(k) is real if and only if it is a product of two involutions in G(k). Every unipotent element in G(k) is a product of two involutions in G(k). We discuss reality for G2 over special fields and construct examples to show that reality fails for semisimple elements in G2 over Q and Qp. We show that semisimple elements are real for G2 over k with cd(k) ≤ 1. We conclude with examples of nonreal elements in G2 over k finite, with characteristic k not 2 or 3, which are not semisimple or unipotent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Regular Power Graph on the Conjugacy Classes of Finite Groups

emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.

متن کامل

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

ar X iv : 0 80 1 . 44 43 v 2 [ m at h . G T ] 1 8 M ar 2 00 8 CONJUGACY CLASSES OF 3 - BRAID GROUP B 3

In this article we describe the summit sets in B3, the smallest element in a summit set and we compute the Hilbert series corresponding to conjugacy classes. The results will be related to Birman-Menesco classification of knots with braid index three or less than three.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008